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Abstract—Vertex-centric graph computations are widely used 
in many machine learning and data mining applications that 
operate on graph data structures. This paper presents 
GraphGen, a vertex-centric framework that targets FPGA for 
hardware acceleration of graph computations. It improves 
over existing software-based frameworks by accelerating 
graph operations using custom pipelined logic on FPGA. 
GraphGen accepts a vertex-centric graph specification and 
automatically compiles it onto an application-specific 
synthesized graph processor, which is customizable by user-
defined graph instructions and utilizes a special-purpose 
memory subsystem for graph computations. To produce an 
efficient implementation, GraphGen performs both graph-level 
and FPGA-level optimizations. In addition to implementation 
artifacts, GraphGen provides software and RTL models to 
assist validation activities. Our design case studies demonstrate 
that the framework is flexible by implementing two graph 
applications (stereo matching and handwriting recognition) on 
two different FPGA boards (Terasic DE4 and Xilinx ML605). 
The FPGA implementations automatically generated by 
GraphGen are up to 14.6x and 2.9x faster than software on 
Intel Core i7 CPU for the two applications, respectively. 
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I.  INTRODUCTION 
Computations on graph-based data structures are the 

basis of many applications in machine learning and data 
mining, enabling many important capabilities in modern 
computing (e.g., stereo matching [15], image segmentation 
[15], handwriting recognition [12], face detection [5], etc). 

Vertex-centric graph computation frameworks, such as 
GraphLab [8], GraphChi [6], and Pregel [10], have been 
proposed to implement such graph-based applications. 
Vertex-centric graph specifications are flexible for capturing 
various graph-based applications with arbitrary graph 
structures, data types, and graph update functions. They 
allow application developers (e.g., machine learning experts) 
to specify graph computation at a high-level abstraction, 
without being bogged down by low-level optimization 
intricacies. Given a graph specification, a framework can 
automatically generate optimized parallel implementations. 

The aforementioned vertex-centric graph computation 
frameworks map graph computations to software running on 
general-purpose processors (GPPs). They have not explored 
execution on FPGA platforms. While harder to program, 
FPGAs are becoming more widely available (e.g., Convey, 
IBM Power8, Intel QPI, and HP Moonshot) and can offer 
significantly better performance and energy efficiency. 
Especially for algorithms with computationally intensive 

graph operations (e.g., energy minimization [15], neural 
network [12][5]), there is an opportunity to significantly 
accelerate these operations by implementing them on custom 
FPGA logic instead of software on GPPs.   

There are prior works (e.g., [2][9][13]) that implemented 
graph computations on FPGA with significant performance 
and energy improvements over GPPs. However, they have 
been ad-hoc manual implementations of specific graph 
algorithms on specific platforms of interest. Thus, they 
require high development effort and the resulting 
implementation is not readily portable to other FPGA 
platforms. One prior work proposed an FPGA-based graph 
framework [1]. However, it does not support the vertex-
centric abstraction and it is limited to only applications 
where the graph data are read-only. 

This paper presents GraphGen, an FPGA framework for 
vertex-centric graph computation. GraphGen allows 
application/algorithm programmers without specific platform 
expertise to take advantage of the performance and energy 
efficiency of FPGA platforms. GraphGen accepts a vertex-
centric graph specification and automatically compiles it to 
an application-specific synthesized graph processor on 
FPGA. The processor is customized with user-defined graph 
instructions, implemented as pipelined custom logic. Its 
memory subsystem is designed to handle graph data 
structure. Utilizing the CoRAM technology [3] for realizing 
the DMA interface between on-chip scratchpad and external 
DRAM, GraphGen framework can target any FPGA 
platforms supported by CoRAM. GraphGen also provides 
simulators and RTL testbenches for automated validation. 

This paper also presents design case studies that 
demonstrate the flexibility of GraphGen in implementing 
two popular machine learning applications (stereo matching, 
handwriting recognition) on two different FPGA platforms 
(Xilinx ML605 and Terasic DE4). The results show that 
GraphGen implementations (at 150MHz) are up to 14.6x and 
2.9x faster than software on 1.87 GHz Intel Core i7 CPU for 
the two applications, respectively. Comparison against GPUs 
and prior FPGA implementations are also provided. 

The rest of the paper is organized as follows. Section II 
provides an overview of GraphGen. Section III describes the 
vertex-centric specification input to GraphGen. The 
hardware architecture and compilation procedure are detailed 
in Section IV and V, respectively. Validation capabilities are 
described in Section VI. Section VII presents the design case 
studies to evaluate GraphGen. Section VIII discusses related 
work. Section IX offers concluding remarks.  

II. OVERVIEW OF THE GRAPHGEN FRAMEWORK  
To the best of our knowledge, GraphGen is the first 

vertex-centric graph computation framework that targets 
FPGAs. The framework consists of a customizable 
synthesized graph processor architecture and a compiler to 
map a given vertex-centric graph algorithm specification to 
an FPGA implementation. Figure 1 gives an overview of the 
GraphGen framework. The development flow is as follows:   

Figure 1. GraphGen framework overview. 

 



1. First, a user creates a vertex-centric specification for the 
graph computation of interest. He/she also specifies 
design parameters for the target FPGA implementation, 
such as the maximum allowable size of subgraphs to be 
executed by the graph processor. At present, choosing 
design parameters is done manually, but can be 
automated in the future by a design explorer system. 

2. Based on these inputs, the framework performs 
compilation to produce a synthesizable Verilog RTL of 
the system, which is then synthesized and mapped by 
standard FPGA tools for final implementation. In 
addition to the RTL designs, the GraphGen compiler 
also generates a memory image of the executable (graph 
program, graph structure and graph data). 

3. The framework also offers a validation suite to check 
the correctness of the implementation.   

4. Using GraphGen, a user can rapidly generate and 
evaluate various implementations by modifying input 
vertex-centric specification and/or design parameters. 

The following four sections provide details on the 
various aspects of the GraphGen framework.  

III. VERTEX-CENTRIC GRAPH SPECIFICATION  

A. Overview 
In a vertex-centric specification [6][8][10], graph 

computation is formulated as a graph G = (V, E, D), where V 
and E are the vertices and edges of G. An edge e = (u,v) 
connects two vertices u and v. If the edge is directed, then u 
is the source and v is the destination. Arbitrary data D can be 
associated with each vertex, {Dv : v ∈ V}, and each edge, {De : 
e ∈ E}. The values of D can be updated by the execution, but 
the structure of G (i.e., V and E) is fixed. 

The unit of computation on a vertex is specified as an 
update-function(v), which is a stateless function that modifies 
the scope of the vertex v. A scope Sv is the data associated 
with vertex v and its adjacent edges and vertices. The update-
function is executed for each vertex iteratively until a 
termination condition is met (e.g., desired number of 
iterations has been reached). 

 Thus, a vertex-centric specification of a graph 
computation contains the following: 
• The graph structure, which consists of vertices in the 

graph, and the edges connecting them. 
• The data structures that represent vertex and edge data. 
• The update function definition, indicating how to update 

the scope for a given vertex.  
• Graph traversal order, which dictates possible orders of 

vertices to apply the update function to.   

B. Update function Specification in GraphGen  
Unlike existing frameworks that describe an update 

function as a software function (e.g., C++ code), GraphGen 
describes an update function as a composition of custom 
graph instructions, which are mapped to the graph processor 
on FPGA. GraphGen update function is specified as follows: 
• First, custom instructions used in the update function are 

defined. A user can define custom instructions that 
compute any arbitrary combinational functions using the 

scope and temporary data variables as input and output.  
The temporary data variables are explicitly declared.  

• Then, the user provides pipelined RTL implementations 
of these custom instructions as part of the specification. 
These implementations are integrated into the graph 
processor during the compilation process (detailed in 
Section V). The RTL implementations of the custom 
instructions must follow the interface declared in the 
specification. Any hardware design methodology can be 
used to create these custom instruction implementations. 
E.g., adapted from existing hardware IP, made from 
scratch, generated using high-level synthesis tools.  

• Finally, the update function is specified as a 
composition of custom instructions. During compilation, 
the specification of update function, custom instructions, 
and graph structure are used to generate a sequence of 
custom instructions to perform an update function for a 
given vertex in the graph, i.e., a vertex program.  

C. An Example Specification 
Figure 2(a) shows a simple example of a graph with six 

vertices (v1 to v6) and seven edges (e1 to e7). The graph 
structure is expressed textually in GraphGen specification, 
but illustrated graphically in Figure 2(a) for clarity. 

Figure 2(b) depicts example data structure definitions for 
vertex data (Dv) and edge data (De). It also shows the data 
structure definition for temporary data variables used by the 
update function. This example depicts three 32-bit integers 
(L0 to L2), but generally it can be any arbitrary structure. 

 
Figure 2. An example vertex-centric graph specification. 

 



Figure 2(c) shows the declarations of custom instructions 
named i1, i2, and i3. Pipelined RTL implementations for 
these instructions are also included as a part of the 
specification. Figure 2(d) illustrates the RTL module 
interface for custom instruction i1 (clock and reset signals 
not shown for brevity). It inputs a vertex data and outputs a 
temporary data value, consistent with the instruction 
declaration for i1. The module is annotated by the number of 
pipeline stages that it has. This information is used during 
compilation, which is explained in Section V. In this 
example, the input goes through two pipeline stages in the 
module before it leads to the final output. However, since the 
module is pipelined, it can accept a new input every cycle.  

Figure 2(e) depicts an example update function. It first 
reads vertex data (vdata) and initializes a temporary variable 
(tdata) by applying a custom instruction i1. Then, it reads 
through all the adjacent edges, and uses a custom instruction 
i2 to calculate a new value for tdata. Finally, adjacent edges 
are updated by i3 based on input edge data (edata) and tdata.  

Figure 2(f) shows an example traversal order from top-
left to bottom-right of the graph. The traversal consists of 
four phases (P0, P1, P2, P3) that need to be executed in 
order. The vertices within each phase are independent and 
can be executed in parallel. E.g., the update functions for v2 
and v3 in P1 can be executed in parallel.  

While relatively simple, this example is representative of 
many low-level computer vision applications [15], such as 
the stereo matching application used in our case study.  

From the aforementioned specification, the GraphGen 
compiler can produce a vertex program, which is a sequence 
of instructions for the graph processor to compute an update 
function for a given vertex in the graph. Figure 3(a) shows an 
example program for vertex v3. The first i1 instruction 

performs initialization to temporary data variables. Then, the 
for-each loop is elaborated into three i2 instructions 
operating on the edges (e2, e4, e5) connected to v3. The 
final three i3 instructions compute the last for-each loop. 
Figure 3(b) shows vertex program for v2, containing only 
five instructions since v2 is connected to two edges (e1, e3).  

D. Improving Parallelism Using SIMD Graph Instructions 
Since an update function often contains for-each loop 

operations over the connected edges and/or vertices. There is 
an opportunity to improve parallelism by using a single 
instruction that operates on multiple data (SIMD). GraphGen 
supports such SIMD style custom instructions.  

Figure 4(a) shows a SIMD version of the custom 
instruction i2 from figure 2(c) applied to vertex program for 
v3 from Figure 3(a). We refer to the number of data 
processed at a time as SIMD-degree. In this example, two 
edge data are processed by the i2 instruction. Therefore, one 
i2 instruction can now process both e2 and e4 edges. 
Consequently, the number of instructions needed to compute 
one for-each loop in the update function is now reduced by 
one. Increasing the SIMD-degree to three further reduces the 
number of instructions to one, as shown in Figure 4(b).  

The RTL implementation for a SIMD instruction needs 
to be included as a part of the specification. In this case, the 
interface of the RTL implementation will need to incorporate 
an appropriate number of vertex and/or edge data inputs 
and/or outputs as specified by the instruction SIMD-degree.  

IV. ARCHITECTURE  
GraphGen framework targets a system architecture 

depicted in Figure 5. It consists of a graph processor and the 
memory subsystem, intermediated by scratchpads.  

The processor is customizable to integrate user-defined 
graph instructions provided in the input specification. The 
processor executes update functions for a set of vertices (i.e., 
a subgraph) at a time. The subgraph data and vertex 
programs are stored in the processor’s vertex scratchpad 
(VS), edge scratchpad (ES), and instruction scratchpad (IS), 
which are implemented using FPGA Block RAMs.  

The graph data and vertex programs for the entire graph 
are stored in external memory (DRAMs). The compiler 
partitions the input graph into subgraphs and determines the 
execution schedule for them. The memory system contains a 
DMA controller that transfers the subgraphs to/from the 
processor following the execution schedule.   

Figure 3. The program for vertices v3 and v2, compiled from 
specification in Figure 2.  

 

 
Figure 4. SIMD instructions can be used to improve parallelism and 

reduce the number of instructions needed in the program. 

 

 
Figure 5. System architecture. 

 



The processor is a slave to the DMA controller. Once the 
DMA controller brings a subgraph into the processor’s 
scratchpads, it tells the processor to start execution. When 
finished, the processor signals the DMA controller indicating 
it is now idle and ready to execute another subgraph. 

To overlap data transfer and computation, the processor 
uses two sets of scratchpads for double buffering. While it is 
operating on one set, the DMA controller pre-fetches the 
next subgraph to execute to the second set. 

A. Processor Pipeline and Scratchpads 
The proposed graph processor uses an in-order pipeline 

microarchitecture shown in Figure 6. The front-end consists 
of four stages (F1, F2, D, RD) that fetches the instruction 
from the instruction scratchpad (IS.rd), decodes it, and read 
operands from vertex scratchpad (VS.rd), edge scratchpad 
(ES.rd), and temporary data variables (tdata.rd). Temporary 
data variables are stored in registers. The Fetch logic 
interfaces with the program counter (PC) and thread 
scheduler (Thread) to sequence through the instructions in 
the IS. The Decode and Unpack logic are generated 
accordingly based on the input vertex-centric specification. 
For the example in Figure 2(b), the Unpack logic converts 
the read data into {L0, L1, L2}.  

The back-end stages consist of a customizable number of 
execution stages (E1 to En), followed by the final stage (WB) 
that packs (Pack) and writes data back to the vertex 
scratchpad (VS.wr), edge scratchpad (ES.wr), and temporary 
data variables (tdata.wr). The execution stages are for the 
execution unit, which integrates the pipelined RTL 
implementations of the custom instructions provided in the 
input specification. The number of stages used by these RTL 
implementations determines the number of execution stages. 

Data widths used by scratchpads, temporary data variable 
registers, and the corresponding pipeline registers are all 
customized based on the data structures described in the 
input specification. Size of the scratchpads is also 
customizable to accommodate different subgraph sizes. 

The processor pipeline supports multi-threading to 
improve efficiency. A thread is a sequence of instructions 
that computes an update function (a vertex program) for a 
vertex. Different threads of independent update functions 
from different vertices can be interleaved to improve pipeline 
utilization (e.g., v2 and v3 update functions in Figure 2). 

To simplify design and improve critical path, the pipeline 
does not include any logic for hazard detection and 
resolution within one thread. To guarantee that there is no 
data hazard in the pipeline, the compiler interleaves 
instruction streams so there can only be a single instruction 
from any one thread in the pipeline at a given time. 

To support SIMD instructions, the scratchpads support 
customizable data access ports. For the SIMD instruction 
example in Figure 4(a) that reads two edges, the edge 
scratchpad is customized to use two read ports. Accordingly, 
the processor pipeline is customized to use two ES.rd 
interfaces. While possible to support multiple data writes, 
our current GraphGen prototype does not support this yet. 

B. Memory Subsystem 
The memory subsystem stores the architectural states 

shown in Figure 7. It holds the graph data and an execution 
schedule described as an ordered list of subgraph descriptors. 
A subgraph descriptor contains the following information: 
• Header information for bookkeeping (e.g., number of 

vertices and edges in the subgraph).  
• Lists of vertices and edges that belong to the subgraph. 
• A subgraph program, which is the combination of all 

programs for the vertices in the subgraph. 
The DMA controller goes to each subgraph descriptor in 

the execution schedule, brings the subgraph (i.e., vertex data, 
edge data, and subgraph program) into the processor’s 
scratchpads, and tells the processor to start execution. 

While the processor is executing, the DMA controller 
pre-fetches the next subgraph into the second set of 
scratchpads to overlap computation and data transfer.  

Since the pre-fetched subgraph may share some vertices 
and edges with the current subgraph being executed, the 
memory system ensures coherency by transferring the most 
up-to-date results of such shared data across the scratchpad 
sets paired for double buffering. This transfer is done after 
the processor finishes executing the current subgraph and 
before it starts executing the next (pre-fetched) subgraph. 

The DMA-based memory subsystem is implemented 
using CoRAM [3], which can automatically generate a DMA 
controller implementation for a target FPGA platform from a 
C-like description. Using CoRAM as a back-end allows 
GraphGen to target any platform supported by CoRAM. 

 
Figure 6. Graph processor pipeline. 

 

 
Figure 7. Architectural states stored by memory system. 

 



V. COMPILER 
The key steps taken by GraphGen to compile an FPGA 

implementation from an input specification are as follows.  
Graph Partitioning. First, for a graph application where 

the dataset does not fit in the FPGA Block RAMs, the graph 
is partitioned into smaller subgraphs so they can fit onto the 
processor’s scratchpads. The choice of graph partitioning 
strategy is an open research problem. The most appropriate 
strategy depends on the graph algorithm and structure.  For 
example, in the stereo matching application we studied, prior 
work has already suggested tile-based partitioning [7].  

As such, GraphGen provides both manual and automatic 
partitioning capabilities. To partition a graph manually, the 
user provides a list of subgraphs and their member vertices 
as input design parameters. Alternatively, the user can set the 
maximum allowable subgraph size, and GraphGen can 
automatically partition the graph to subgraphs abiding by the 
size constraint. The current GraphGen prototype’s automatic 
partitioning strategy is to go over each execution phase in the 
graph traversal order and form as large subgraph as possible 
containing independent vertices within each phase. Other 
automatic graph partitioning strategies is left for future work. 

Subgraph Programs. After the graph is partitioned, the 
next compilation step produces the program for each of the 
subgraphs. Based on the input update function specification 
and graph structure, GraphGen first creates program for 
every vertices. SIMD-degree is considered accordingly (e.g., 
as in Figure 4 example). Then, it combines the programs for 
the vertices in a given subgraph into a subgraph program. 
Each vertex program is associated with a thread in the 
processor. Instructions from different threads are interleaved 
to form a subgraph program. The number of threads 
supported by the pipeline is derived from the pipeline depth, 
calculated based on the provided RTL implementations of 
custom instructions. The compiler interleaving optimization 
attempts to fill all the available thread slots in the processor.  

Memory Image. The next compilation step produces a 
memory image for the FPGA. It first lays out vertex and 
edge data in a contiguous DRAM spaces. Based on the 
DRAM layout, it determines the layout of each subgraph 
data when it is brought into the processor’s scratchpads. As 
detailed in section IV, the DMA controller transfers each 
subgraph to these scratchpads prior to processing. For 
optimal use of DRAM bandwidth, the scratchpads should lay 
out the graph data such that it maps to a contiguous set of 
data in DRAM so coalesced burst data transfers can be done 
between DRAM and scratchpads. However, since input 
graph can be of any arbitrary structure, mapping contiguous 
set of data in DRAM to processor’s scratchpads is not 
always possible. The compiler attempts to maximize 
coalescing by re-ordering data placement in the scratchpad 
and even padding with a small amount of unused data if it 
results in better coalesced burst transfers. Once data layout in 
the processor scratchpads is determined, the subgraph 
programs are finalized to include pre-computed scratchpad 
indices to point to the appropriate operands in the scratchpad. 

RTL Design. The last step of the compilation is to 
generate the synthesizable RTL implementation (Verilog). 

This step first produces the graph processor RTL 
implementation. Then, it is integrated with the CoRAM-
based memory subsystem. Finally, CoRAM system [3] is 
used to produce the final Verilog implementation.  

VI. VALIDATION  
One challenge in an automated framework such as 

GraphGen is to validate that the generated implementation is 
functionally equivalent to the given input specification. 
GraphGen provides facilities to validate correctness across 
different levels of the framework, as follows: 
• Vertex-level functional software simulator. This 

simulator models the behavior of the given vertex-
centric input specification. The simulator applies update 
function to each vertex in the graph one at a time, 
abiding to the graph traversal order. It is useful in 
ensuring that the specification behaves as expected, and 
as a reference to validate lower levels of the framework. 

• Instruction-level software simulator. This simulator 
models the execution of subgraph programs, one 
instruction at a time. It is used to validate that the 
subgraphs and their programs are correct. In this 
simulator, an instruction executes in a single step. 
Pipeline-level details are not modeled. It also models 
only the functionality of the memory and processor’s 
scratchpads (not cycle accurate).  

• Testbench for validating the generated graph 
processor RTL implementation. Validation compares 
instruction traces generated by the testbench against 
those produced by the instruction-level simulator. 

• Testbench for the RTL implementation of the entire 
system. Validation compares instruction traces and final 
outputs from higher-level models against those 
generated by this testbench. 

Optionally, debugging hooks and performance counters can 
be included in the final RTL to support on-FPGA validation. 

VII. EVALUATION  
We carried out design case studies to evaluate the 

effectiveness of the GraphGen framework. Experiments were 
performed on the ML605 and DE4 platforms, detailed in 
Table I. All experiments were performed by programming 
the FPGA, loading initial data into on-board DRAM, 
performing the graph computation, reading final data from 
the board, and validating the results against reference results. 

TABLE I.  FPGA PLATFORMS USED IN EVALUATION 

Platform Xilinx ML605 Terasic DE4 

FPGA Xilinx Virtex-6 
LX240T 

Altera Stratix IV 
EP4SGX530 

Logic Cells 241,152 531,200 

Block Memory 14,976 Kbit 27,376 Kbit 

DSPs 768 1024 

DRAM Bandwidth 6.4 GB/s 12.8 GB/s 

DRAM Capacity 512 MB 2 GB 

 



Hardware performance counters were used to measure 
runtimes during the graph computation part only.  

A. Graph applications under study 
The first application we studied is stereo matching [15], 

as shown in Figure 8(a). This application accepts a stereo 
image pair (left and right 2D images) and infers the disparity 
map containing depth information for each pixel. E.g., In 
Figure 8(a), the lamp is inferred to be closer than the statue. 
This study uses the Tree-Reweighted Message Passing 
(TRW-S) algorithm for stereo matching, which provides 
superior inference quality over other alternatives [15].  

The second application we studied is handwriting 
recognition, as shown in Figure 8(b). It accepts an image of a 
handwritten digit and outputs an inference of what the digit 
should be. The figure illustrates various possible inputs of 
handwritten digit “3” from the MNIST database [12]. This 
study uses Convolutional Neural Network (CNN) [12], 
which is a popular algorithm for handwriting recognition.  

GraphGen is flexible enough to support these two 
applications, which have widely different attributes, as 
shown in Table II. TRW-S operates on a regular grid graph 
where each vertex corresponds to a pixel in the input image, 
while CNN uses a multi-layer irregular graph where each 
vertex represents a neuron. Each graph has its own traversal 
order. TRW-S graph is manually partitioned into tiles as 
suggested by [7]. The partitioning of CNN graph is not well 
studied and is left to the auto-partitioning capability of 
GraphGen. The RTL implementation of the custom 
instructions for TRW-S is adapted from an existing hardware 
IP [2]. For CNN, we made the RTL implementation 
manually. Graph partitioning is set to target subgraphs with 
sizes that provide sufficient independent vertices to best 
utilize the processor pipeline. (e.g., TRW-S tile height is set 
to match the pipeline depth). 

B. Performance of GraphGen generated implementations 
We used GraphGen to generate implementations with 

SIMD-degrees of 1, 2, and 4 for ML605 and DE4 boards. 
The only exception was CNN for the ML605, which did not 
have enough routing resources to accommodate SIMD-
degree 4. Ideally, the SIMD-degree should be high enough to 
match the available parallelism in the graph. For TRW-S, a 
vertex has only up to 4 edges (i.e., left, right, up, down). So, 
using SIMD-degree above 4 to process more than 4 edges in 
parallel will not be useful. For CNN, a vertex can have more 
than 1000 edges, and can benefit from a higher SIMD-
degree. However, we found that our designs are more limited 
by routing than hardware utilization. This is due to creating 
large scratchpads, which are replicated in designs with 
multiple read ports when using SIMD. This makes it difficult 
to meet timing with SIMD-degree higher than 4. We target 
clock frequency of 100 MHz for the graph processors on the 

 
Figure 8. Graph applications under study. 

 

TABLE II.  ATTTRIBUTES OF GRAPH APPLICATIONS UNDER STUDY 

Applications Stereo Matching Handwriting 
Recognition 

Algorithm 
Tree-Reweighted 
Message Passing 

(TRW-S) 

Convolutional 
Neural Network 

(CNN) 
CPU software base  Middlebury [15] CodeProject [12] 

GPU software base Made in house  CodeProject [4] 

Dataset Tsukuba  
(384x288 images) 

MNIST database 
(29x29 images) 

Graph size 110,592 vertices, 
221,184 edges  

5,589 vertices,  
341,224 edges 

Graph shape Grid, regular Multi-layer, irregular 

Graph traversal Diagonal First to last layer 

Graph partitioning Manual (partition to 
tiles, as in [7]) Automatic 

Subgraph size Tile of 12x64 vertices Up to 2K vertices 
and 16K edges 

Vertex/edge size 16 x 32-bit  32-bit 
Custom instruction 
implementation 

Adapted an existing 
hardware IP from [2] Manually made  

Pipeline depth 12 14 

 

 
Figure 9. Performance of GraphGen implementations. 

 



ML605. For DE4, we could run the graph processor at both 
100MHz and 150MHz. The DE4 implementations also have 
2 DDR channels for higher DRAM bandwidth. All DE4 
implementations use 2 DDR channels, except for 150MHz 
CNN with SIMD-degree 4, which did not meet timing. 

Figure 9 depicts the performance for the aforementioned 
implementations generated by GraphGen. The y-axis shows 
performance as runtime for one iteration of the algorithm. 
One iteration consists of a full graph traversal (i.e., top-left to 
bottom-right and back for TRWS; first to last layer for 
CNN). The x-axis shows the various implementations 
evaluated. Runtimes are broken down into the time when the 
processor is active (i.e., Compute) and the time when it is 
waiting for data to be loaded to its scratchpads (i.e., Data).  

SIMD. The results show that the SIMD optimization 
helps improve performance. For CNN, since almost all of the 
instructions can take advantage of reading and processing 
multiple edges, doubling the SIMD degree reduces the 
instruction count as well as the compute time by almost half.  

For TRW-S, only about half of the instructions can take 
advantage from reading and processing multiple edges. The 
other half of the instructions could take advantage of 
processing and updating of multiple edges. However, since 
GraphGen does not yet support parallel updates, we could 
not capitalize on this opportunity. Therefore, all together, 
increasing SIMD-degree only reduces compute time of 
TRW-S by ~20%, a more modest improvement than in CNN. 

Double Buffering. The results also show that for most of 
the designs, the time processor stalls to wait for data to be 
loaded to its scratchpads is negligible. This indicates that 
double buffering successfully overlap data transfer with 
computation. To achieve this, each subgraph transfer time 
has to be smaller than or equal to the compute time. The 
transfer time is affected by the amount of data being 
transferred and the transfer rate. To improve transfer rate, 
GraphGen performed optimizations to coalesce memory 
transfers. The resulting implementations for TRW-S 
achieved 85% and 79% of peak DRAM bandwidth 
utilization with one and two DDR channels, respectively. 
Based on the transfer rate, we chose the appropriate subgraph 
size to optimally overlap data transfer time with computation 
time. The CNN implementations are not limited by memory 
bandwidth since its dataset is much smaller than TRW-S.  

DE4 vs. ML605. There are still some designs where 
double buffering does not completely hide data transfers, 
such as TRW-S on ML605 with SIMD-degree of 2 and 4. In 
this case, utilizing two memory channels on the DE4 board 
to tap into 2x more DRAM bandwidth than ML605 result in 
improvement in data transfer time, such that processor stalls 
waiting for data are almost completely eliminated.   

Finally, using higher frequency processor in the DE4 
implementations lead to reduction in computation time. For 
some designs (i.e., TRW-S with SIMD-degree of 1 and 4), 
such shorter compute leads to exposure in data transfer time.  

C. Comparison against CPU and GPU implementations 
To evaluate the quality of GraphGen implementation, we 

compared the best design we have (i.e., DE4-150, SIMD:4) 
against CPU and GPU implementations. Table II shows the 

CPU and GPU software that we used. The GraphGen 
implementations use fixed-point instead of floating point 
values, as suggested by prior work [2][5]. CNN uses a 
hyperbolic tangent function in its computation, which is 
approximated in FPGA using a lookup-table approach [11]. 
We ensure that the CPU, GPU, and FPGA implementations 
produce similar results (i.e., inference accuracy within 1%). 

We evaluated both performance and energy efficiency of 
each implementation. The performance is represented as 
iteration per second, and the energy efficiency is estimated 
by normalizing performance by power consumption 
(iteration/joule). Due to the difficulty in precisely measuring 
power consumption, we use vendor provided peak power for 
each platform. Table III shows the maximum power and 
operating frequency of the platforms under study. 

Comparison results are summarized in Table III. For both 
applications, GraphGen FPGA implementations outperform 
both CPU and GPU. For TRW-S, GraphGen is 14.6x faster 
than CPU and 10.8x faster than GPU. (GPU is only 1.3x 
faster than CPU for TRW-S). The GPU performance is 
limited by their small local memory and the inefficiencies 
when mapping the diagonal graph traversal to SIMD. For 
CNN, GraphGen FPGA implementation is 2.9x faster than 
CPU, while GPU is only 2.3x faster. The performance 
improvement of FPGA and GPU over CPU are both modest 
because the CNN benchmark is almost ideal for the CPU—
the graph data size is small (29x29 images) and fits 
completely in the CPU’s cache. 

When the energy efficiency (iteration/joule) is 
considered, GraphGen’s FPGA implementations compare 
even more favorably to the CPU and GPU implementations. 
The estimated energy efficiency of GraphGen 
implementation is 31.2x and 6.3x better than CPU for TRW-
S and CNN, respectively. For GPU, energy efficiency is 
worse than CPU for TRW-S and about the same for CNN.  

D. Comparison against Ad HoC FPGA implementations 
TRW-S. A recent work [2] has demonstrated the highest 

performing FPGA implementation of stereo matching using 
TRW-S. Their implementation was manually developed and 
uses a high-end Convey HC-1 system. It achieves 2.6x better 
performance than the best GraphGen implementation (i.e., 

TABLE III.  COMPARISON AGAINST CPU AND GPU 

 CPU GPU GraphGen 

Platform Intel® 
Core i7 

Nvidia 
GTX 680m Terasic DE4 

Frequency 1.87 
GHz 719 MHz 150 MHz 

Max Power 45 W 100 W 21 W 

Stereo Matching using TRW-S 

Performance(iteration/sec) 8.3 (1x) 11.2 (1.3x) 121 (14.6x) 

Energy (iteration/joule) 0.2 (1x) 0.1 (0.6x) 5.8 (31.2x) 

Handwriting Recognition using CNN 

Performance(iteration/sec) 458 (1x) 1041 (2.3x) 1343 (2.9x) 

Energy (iteration/joule) 10.2 (1x) 10.4 (1x) 64 (6.3x) 

 



based on their reported runtime running the same Tsukuba 
stereo image we used in our study). Keep in mind, this is not 
an apples-to-apples comparison but serves to establish that 
our generated implementations are comparable with hand-
designed implementations. While both implementations run 
at 150 MHz, the HC-1 has 20GB/s DRAM bandwidth per 
FPGA whereas the DE4 has only 12.8 GB/s. (Note that HC-1 
costs $50K while the DE4 only costs $8K.) 

Another reason for the performance difference is because 
the implementation on HC-1 is specially built for TRW-S. 
As such, the HC-1 implementation can perform one update 
function with a single round of access to the edge and vertex 
data by its processing pipeline (1 cycle per update function). 
On the other hand, in GraphGen, an update function has to 
be broken down into multiple instructions to be acceptable 
by the GraphGen compiler.  

CNN. The most relevant prior work that implements 
CNN on FPGA is the CNP architecture [5], which combines 
a general purpose soft processor combined with a custom co-
processor for CNN. The co-processor is especially designed 
to perform many multiply-accumulate in parallel, which is 
the most common operation in CNN.  

The result reported in their study is for face detection. It 
uses CNN algorithm on a much larger graph than one used in 
our study. They reported an average performance of 3.4x109 
edges per second. The highest performing GraphGen design 
in our study has 7.4x lower throughput. This is because the 
CNP co-processor has 49 parallel multiply-accumulate units, 
while our GraphGen implementation (with only one graph 
processor) only supports 4 parallel multiply-accumulates.  

VIII. RELATED WORK 
There are several existing vertex-centric graph 

computation frameworks, such as GraphLab [8], GraphChi 
[6], and Pregel [10]. These frameworks are based on 
software and target standard general-purpose processors. 
Their main focus has been graph computation on very large 
dataset, such as social network or web graphs. They provide 
facilities for handling very large graph, including techniques 
to partition the graph and distribute the computation among 
many machines. GraphChi targets effective use of disk-
stored data to handle very large graph data. GraphGen can 
complement these systems by providing the capability to 
map the computation onto FPGA for acceleration.  

Many prior works that implement graph computation on 
FPGAs do so in an ad-hoc manner (e.g., [2][9][13]). While 
hand-designed implementations result in a very good 
performance, they are fixed to specific target applications 
and platforms. On the other hand, GraphGen allows mapping 
any vertex-centric graph computation onto any FPGA 
platforms supported by CoRAM. 

Prior works have studied several FPGA frameworks, but 
none of them targets the vertex-centric abstraction. For 
example, the CNP framework [5] supports convolutional 
neural networks, while the FPMR [14] supports map-reduce 
abstraction. The work most relevant to GraphGen is done by 
Betkaoui et. al., which developed an FPGA framework for 
large graph problems [1]. However, their framework can 
only support problems where the graph data is read-only. 

These are useful for collecting graph statistics, but not useful 
for applications that modifies data (including stereo 
matching and handwriting applications used in our study).  

IX. CONCLUSION 
This paper has presented GraphGen, an FPGA 

framework for vertex-centric graph computation. The 
framework accepts a vertex-centric specification and 
produces an FPGA implementation for the target platform. It 
also provides validation models. Design case studies 
demonstrate that GraphGen is flexible to handle different 
graph applications targeting different FPGA platforms. They 
also show that GraphGen implementations are up to 14.6x 
and 2.9x faster than software on Intel Core i7 CPU for stereo 
matching and handwriting recognition, respectively.  
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