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ABSTRACT
This paper presents initial work on developing a C compiler
for the CoRAM FPGA computing abstraction. The pre-
sented effort focuses on compiling fixed-bound perfect loop
nests that operate on large data sets in external DRAM. As
required by the CoRAM abstraction, the compiler partitions
source code into two separate implementation components:
(1) hardware kernel pipelines to be mapped onto the recon-
figurable logic fabric; and (2) control threads that express,
in a C-like language, the sequencing and coordination of
data transfers between the hardware kernels and external
DRAM. The compiler performs optimizations to increase
parallelism and use DRAM bandwidth efficiently. It can
target different FPGA platforms that support the CoRAM
abstraction, either natively in a future FPGA or in soft-logic
on today’s devices. The CoRAM abstraction provides a con-
venient high-level compilation target to simplify the task of
design optimization and system generation. The compiler
is evaluated using three test programs (matrix-matrix mul-
tiplication, k -nearest neighbor, and 2D convolution) on the
Xilinx ML605 and the Altera DE4. Results show that our
compiler is able to target the different platforms and effec-
tively exploit their dissimilar capacities and features. De-
pending on the application, the compiler-generated imple-
mentations achieve performance ranging from a factor of 4
slower to a factor of 2 faster relative to hand-designed im-
plementations, as measured on actual hardware.

Categories and Subject Descriptors
B.5.2 [Hardware]: REGISTER-TRANSFER-LEVEL IM-
PLEMENTATION:Automatic synthesis; Optimization

General Terms
Design
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FPGA computing, High-level Synthesis, Loop optimization,
Data reuse
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1. INTRODUCTION
Motivations. Modern FPGAs are capable and efficient

computing devices in a wide range of application areas ([9],
[20], [11], and [15]), but have failed to achieve widespread
use. A major obstacle to the adoption of FPGAs for com-
puting is the high degree of difficulty associated with devel-
oping FPGA applications. Prior work such as CoRAM [10],
LEAP [1] and VirtualRC [17] have approached this prob-
lem from the architectural side by virtualizing an FPGA’s
external memory and I/O interfaces. Such approaches save
development time by avoiding repeated effort in infrastruc-
ture development and enabling portability of completed ap-
plications. What cannot be solved through architecture and
abstraction is the inherent difficulty in manually mapping
algorithms to hardware datapaths that target the FPGA’s
reconfigurable fabric.

Verilog and VHDL, the prevailing design languages for
targeting FPGAs, follow a hardware-centric paradigm that
requires a designer to directly manage highly concurrent,
fine-grained operations with per-cycle coordination. Algo-
rithmic and application experts prefer to operate at a much
higher level of abstraction, and would rather use sequen-
tial languages such as C. As we will discuss in Section 2,
there has been much research and development on compil-
ers that can automatically generate hardware designs for
FPGAs from C and other programming languages.

Compiling Perfect Loop Nests for an FPGA. This
paper presents work on developing a C compiler that can
produce a complete FPGA-based implementation from per-
fect loop nests with fixed bounds. Perfect loop nests are
those in which all computation occurs within the innermost
loop body. The innermost loop body can access large data
sets residing in off-chip DRAM, using both array and in-
direct pointer references. This class of programs includes
many important scientific and numerical applications. As
they typically exhibit a high degree of inherent parallelism
and predictable data access patterns, these programs are
well suited for implementation on an FPGA. Moreover, oth-
ers have worked on transforming non-perfect loop nests into
perfect loop nests [21].

Unlike previous C-to-gates and C-to-FPGA compilers, our
work focuses primarily on achieving efficient use of off-chip
DRAM memory bandwidth and on-chip SRAM buffers. We
use ROCCC (Riverside Optimizing Compiler for Config-
urable Computing [23]) to generate streaming hardware ker-
nel pipelines corresponding to the innermost loop body. Our
compiler seeks to saturate these kernel pipelines by man-
aging the flow of the input and output data streams be-



tween the kernel pipelines and external DRAM. Our com-
piler, built on top of LLVM [24], analyzes the memory ref-
erences in a loop nest for dependencies and access patterns.
The compiler then introduces optimizations to increase par-
allelism, coalesce memory accesses, infer data reuse, and
support efficiently strided memory accesses.

CoRAM Compilation Target. Unlike previous C-to-
FPGA compilers, our compiler does not directly target the
bare FPGA fabric. Instead, we target the CoRAM FPGA
computing abstraction. Figure 1 presents a conceptual de-
piction that demonstates how the CoRAM abstraction en-
forces a separation of concerns between processing and data
movements. Under the CoRAM abstraction, applications
are partitioned into kernel pipelines, which implement com-
putation, and control threads, which sequence control flow
and data transfers. A kernel pipeline performs a specific
task each time it is invoked, interacting solely with attached
CoRAM SRAM buffers and control threads. Section 3 dis-
cusses the CoRAM abstraction in more detail.

Targeting the virtualized CoRAM abstraction allows our
compiler to create implementations for any supported FPGA
platform, either natively in future FPGAs or using soft-logic
on today’s devices. In this paper, we tested our compiler
using the Xilinx ML605 and Altera DE4 platforms. On
these platforms, the CoRAM abstraction is supported by a
soft-logic microarchitectural implementation. The CoRAM
abstraction greatly simplifies our compilation task because
control flow and the management and optimization of mem-
ory data movements are easily expressible in CoRAM control
threads. The CoRAM abstraction also serves to mask even
non-trivial platform differences, such as the number of DDR
memory channels. Our evaluation shows that our compiler
can not only transparently support different FPGA plat-
forms, but can also effectively optimize our test programs
(matrix-matrix multiplication, k -nearest neighbor, and 2D
convolution) for the characteristics of the different targets.
On these test programs, our compiler produced implementa-
tions comparable to hand-designed implementations in per-
formance, ranging from a factor of 4 slower to a factor of 2
faster.

Overview. The remainder of this paper is organized as
follows. Sections 2 and 3 provide background on prior art
in C-to-hardware compilation and the CoRAM abstraction.
Section 4 presents the design and implementation of our
compiler. Section 5 presents our evaluations. Finally, sec-
tion 6 concludes and identifies future extensions.

2. RELATED WORK

2.1 C-to-Hardware Compilers
There is extensive prior and current work, both commer-

cial and academic, on compiling from high-level software
programming languages to hardware implementations. We
provide a brief survey of the most closely related projects in
the field of C-to-hardware compilation.

ROCCC [23], Impulse-C [25], Handel-C [26] and Catapult-
C [27] are all examples of C-to-hardware compilers for gener-
ating hardware kernels. Loop nests are among the key pro-
gram structures exploited by these tools for parallelism and
performance. A common feature is that users can annotate
loops for pipelining or unrolling optimizations. These tools
do not provide integrated end-to-end support for off-chip
DRAM access; the generated kernels interface with on-chip

Figure 1: CoRAM Abstraction Concept.

SRAMs or assume a streaming data interface that relies on
external logic to provide input data and handle output data.
Our work uses ROCCC to generate streaming pipelined im-
plementations of hardware kernels from the innermost loop
body of the loop nest. Xilinx Vivado [28] (formerly Au-
toESL) is a Xilinx-specific tool that compiles C code to hard-
ware kernels that can utilize on-chip BRAMs for interfaces.

Compared to the aforementioned work, the applicability
of our compiler is limited to perfect loop nests. However,
our compiler produces complete, optimized implementations
that can interact with large data sets residing in DRAM.
Altera C2H [29] does produce accelerators with pipelined
memory accesses as a part of the Altera NIOS framework,
but does not automatically perform optimizations to exploit
data reuse and/or interchange loops to increase parallelism.

LegUp [8] represents a different class of hardware com-
pilers for building hybrid hardware/software embedded sys-
tems. Their focus is on starting with a software-only imple-
mentation, and reaching greater performance and/or pow-
er/energy efficiency through the addition of hardware accel-
erators of hot program sections.

Our example programs are implemented from C source
code (Listings 2, 3, 4, and 5). It would be possible to use
existing C-to-gates tools such as the ones described above to
implement them on an FPGA, but some work would be re-
quired (through the introduction of source code annotations
at the very least) in order to create high performance par-
allel implementations that implement reuse-optimized data
transfers between external DRAM and block memories.

2.2 Loop Nest Optimizations
Loop Nest Optimizations are also well studied in the lit-

erature. Polyhedral analysis is the state-of-the-art tech-
nology for automatic pipelining and parallelization of loop
nests [18]. It defines an iteration vector that encodes how
variables change within the loop nest. Optimizations are
constructed as affine transformations of these iteration vec-
tors [5].

Diniz and Park [14] describe compiler analyses using the
polyhedral model to find data reuse and reordering. Alias,
Pasca, and Plesco [2] use polyhedral analysis to tile and
parallelize applications for implementation on an FPGA.
Bayliss and Constantinides [6] use the polyhedral model to
optimize the memory accesses of an application and create
hardware for address generation. Cong, et al. [13] investi-
gated a broad set of mechanisms, including loop interchange,
for optimizing data reuse, buffer sizes, and memory band-
width.

The papers referenced above have a strong focus on spe-
cific optimizations. The goal of our work is not to con-
tribute new loop nest optimizations but to employ them—
extensively leveraging the analysis infrastructure built into



Figure 2: CoRAM Microarchitectural Sketch (figure from [12]).

LLVM [24]—in order to efficiently support C-to-hardware
compilation for the CoRAM abstraction [10]. Our current
capabilities (presented in Section 4) do not require polyhe-
dral analysis. Extensions to incorporate polyhedral analysis
would allow us to automatically introduce memory blocking
transformations and set block sizes. The test programs used
in this paper (Listings 2, 3, 4, and 5) are explicitly blocked
by hand at the source code level. A polyhedral framework,
such as LLVM’s Polly [16] project, provides a path to incor-
porating these analyses and optimizations.

3. CORAM TARGET ABSTRACTION
Our compiler targets the CoRAM abstraction, which pro-

vides a convenient virtualization of the communication and
control infrastructure that connects in-fabric kernel pipelines
to external memory (DRAM). Figure 1 offers a conceptual
depiction of the CoRAM abstraction. Kernel pipelines are
localized in space and in time, and perform a specific task
each time they are invoked, interacting solely with attached
SRAM buffers and control threads.

The application developer uses a C-based language (with
pointer support) to define a set of control threads that dy-
namically manage the contents of the SRAMs and coordi-
nate the invocation of the kernel pipelines. This separation
of concerns between processing and data movement allows
for a high-level virtualized execution environment that sim-
plifies an application’s development and improves the appli-
cation’s portability and scalability.

A fully CoRAM-compliant FPGA would implement the
underlying mechanisms for data transport between kernel
pipelines and external memory with native, hardwired dat-
apaths. This abstraction layer, akin to an ISA for proces-
sors, enables application-level compatibility across different
FPGA families and device generations.

Figure 2 offers a microarchitectural sketch of a possible
datapath implementing the CoRAM abstraction. This de-
sign can be scaled to up to thousands of CoRAM clusters, de-
pending on the capacity of the FPGA [12]. CoRAM SRAM
blocks, like embedded SRAMs in modern FPGAs, are ar-
ranged into columns and organized into clusters. A cluster
is a group of CoRAM blocks attached to the same network-
on-chip endpoint. Grouping blocks together into clusters re-
duces the number of network endpoints needed, and provides
a mechanism to compose several CoRAMs into larger blocks
(with a customizable aspect ratio), but limits available band-

Figure 3: Generating an FPGA system from source code.

width due to the shared network endpoint. Each cluster is
managed by an attached Control Unit, which is responsible
for executing the control threads that run within the cluster.
Control threads in the CoRAM programming abstraction
can be realized by direct synthesis into reconfigurable logic
as finite state machines, or can be executed on dedicated mi-
crocontrollers. In addition to native CoRAM constructs, a
customizable library of “personality” extensions, layered on
top of the basic CoRAM SRAM blocks and APIs, implement
FIFO queues, caches, and similar structures.

While no FPGA available today natively supports the
CoRAM abstraction, it is available for off-the-shelf Xilinx
and Altera FPGA platforms (ML605 and DE4, respectively),
supported by soft-logic implementations of the necessary
mechanisms [22]. The implementations include a network-
on-chip that uses CONNECT [19], control threads that are
compiled into state machines, and CoRAM blocks that are
mapped on top of conventional block SRAMs. More details
are available in our prior work [10] and publicly available
prototype [22].

4. COMPILER IMPLEMENTATION
Our current compiler can only handle perfect loop nests

with fixed loop bounds. Although limited, perfect loop nests
appear extensively in scientific and numerical kernels, and
others have worked on transforming non-perfect loop nests
into perfect loop nests [21].

Our compiler is implemented as a compiler pass for the
LLVM compiler infrastructure [24]. It operates on LLVM
bytecode instructions using built-in facilities for program
analyses and manipulation. The programmer is presented
with the familiar “make” build process that automates the
flow from C source code to a complete FPGA design.

Figure 3 shows the steps that create an FPGA system
from software source code. These steps are:

• Creating LLVM bytecode from source code (and apply-
ing standard optimizations).

• Partitioning the LLVM bytecode into kernel code and
control threads (Section 4.1).

• Applying ROCCC to kernel code in order to generate
kernel pipelines (Section 4.1).

• Analyzing memory accesses to discover data access pat-
terns (Section 4.1).

• Optimizing control thread loop nests (Section 4.2).

• Simplifying data streams (Section 4.3).

• Producing the complete system using the CoRAM De-
sign Generator (Section 4.4).

We continue with a detailed discussion of the important
steps in the implementation process.



1 Returns True if the instruction is a
kernel instruction; otherwise False

2 Bool IsKernel(Instruction i)
3 If i is a store
4 return True
5 Else if i is a non-loop branch
6 return True
7 Else if i is a loop branch
8 return False
9 Else

10 For each Instruction u that consumes
the value produced by i

11 If u uses i as a load/store address OR
12 IsKernel(u) == False
13 return False
14 return True // catch all

Listing 1: Classification Algorithm.

4.1 Kernel Extraction and Synthesis
The CoRAM abstraction requires a separation between

the processing kernel – the portion of the application actu-
ally performing computation – and the code implementing
data transfers and control flow. This separation is achieved
by classifying bytecode instructions as computing or non-
computing bytecode instructions and extracting the com-
puting bytecode instructions.

Listing 1 gives simplified pseudo code of the decision func-
tion IsKernel( ) that decides whether or not each of the byte-
code instructions in the innermost loop body belongs to the
processing kernel. In essence, a bytecode instruction is a
part of the processing kernel only if its entire subtree of de-
pendent bytecode instructions all belong to the processing
kernel. Caching the categorization of previously processed
instructions ensures that each bytecode instruction is only
visited once; the runtime is therefore linear in the number
of bytecode instructions.

The bytecode instructions that are flagged as belonging to
the processing kernel are re-emitted as a C function. Load
and store bytecode instructions in the emitted function are
used as placeholders for creating input and output queues
during hardware mapping. The addresses used by these
bytecode instructions, retained in the original loop nest, are
used in later optimization phases. The compiler can recog-
nize memory addresses that are used as accumulation vari-
ables (first read and then written to in the loop body) and
pair them for special processing. Separate control threads
are created for each input and output variable, which sim-
plifies later optimizations.

The processing kernel is compiled by ROCCC [23] into a
hardware kernel pipeline, with streaming input and output
interfaces replacing load/store bytecode instructions. Each
input and output streaming buffer is mapped to distinct
CoRAM memory blocks and managed by a different con-
trol thread. In Section 4.2 we will explain optimizations
that increase processing throughput by instantiating multi-
ple concurrent kernel pipelines and/or increasing the size of
kernel pipeline through unrolling.

Figure 4 offers a generic system containing multiple par-
allel kernel pipelines that receive data from CoRAM FIFO
personalities that implement input streaming buffers (A and
B). The CoRAM personalities in the figure have been com-
posed with additional logic to create “Reuse Buffers” that
implement a data reuse pattern detected by the compiler

Figure 4: Block Diagram of Generic Streaming CoRAM Ker-
nel Pipelines with associated CoRAM Personalities and Reuse
Buffers.

(discussed in Section 4.3). Bandwidth requirements are also
reduced, as after recognizing an accumulation variable, the
compiler has introduced an Accumulation Buffer that re-
moves the need for explicit synchronization between read
and write threads, and an Initializer to avoid reading data
initialized by a constant from DRAM (C).

The compiler produces optimized control threads to fill
the input buffers as quickly as possible. Without data-
dependence stalls, each hardware kernel pipeline can issue
one loop iteration every cycle. The outputs of an iteration
are produced in-order after the pipeline delay. The control
threads must obey data dependencies and will stall an input
data stream if it depends on the output of in-flight iterations.

LLVM’s Scalar Evolution framework is used to analyze the
memory accesses in loop in each control thread, to infer in-
formation that is used in later optimizations. Each variable
used as an address is analyzed, and its progression at each
loop is flagged as exhibiting one of the following patterns:

• Unchanging: same address across iterations.

• Stride-1: consecutive data items across iterations.

• Computable: non-consecutive data items following an
analyzable progression, such as stride-permutation and in-
direct accesses.

• Undetermined progression.

4.2 Loop Optimizations
The ROCCC generated kernel pipelines can only be satu-

rated if there are no data dependencies across iterations of
the innermost loop. When the kernel pipeline is replicated
for higher performance, even greater parallelism is required
to achieve peak computational throughput. We apply one
of two optimizations to obtain the necessary parallelism.

Loop Interchange. The default mechanism used for in-
creasing parallelism is interchanging loops. This is a classic
loop nest transformation. We move loops at which an accu-
mulation occurs outwards in the loop nest. Selecting an ap-
propriate loop ordering requires a balance between creating
potential parallelism and minimizing on chip buffering—too
little parallelism causes pipeline stalls; too much parallelism
may require excessively large on-chip buffers.

Our compiler follows a simple heuristic for reordering that
works especially well when the loop nest has been blocked
for better memory locality. We select one or more consecu-
tive loops at which the output variable is accumulated, and
move these loops outward until (1) encountering another ac-
cumulating loop; (2) reaching the top of the loop nest; or
(3) reaching a user-specified threshold in the amount of out-
put data that must be buffered. The intent of this strategy



is that the user may match the CoRAM block size to the
application block size.

Reordering loops without taking into account data pat-
terns might convert sequential memory accesses into strided
accesses. Section 4.3 will show how our compiler can trans-
pose strided data in transit, allowing these accesses to be
supported with little performance penalty.

Loop Unrolling. The user may choose to fully unroll
the innermost loop instead of interchanging loops. Unrolling
the innermost loop creates a new function that cascades in-
stances of the baseline processing kernel. As the entire loop
has been unrolled, it no longer can contain a loop-carried
dependency, although the resulting hardware may contain
an input for an accumulation at another loop. The cas-
caded kernel pipeline created by ROCCC reads each input,
with the exception of the accumulated variable, for each
instance of the baseline kernel pipeline. The accumulated
variable is read once and passed between the cascaded in-
stances. Our compiler can optionally attempt to balance
the unrolled function’s dataflow graph in order to minimize
long paths (and the corresponding pipeline depth). Balanc-
ing may be disabled if the order of the operations must be
preserved, such as when implementing certain floating-point
kernels.

Trade-off. The decision to unroll or interchange loops is
currently left to the user. This decision affects both the
amount of data that is buffered and the organization of
the streaming data buffers. An implementation that inter-
changes loops will likely implement a larger number of dis-
crete kernel pipelines (with a shorter pipeline depth) than
one that unrolls the innermost loop. This reduces the re-
quired number of pipeline buffers, but increases the number
of kernel pipelines and accumulated values (one per kernel
pipeline) that must be buffered. Different realizations of
matrix-matrix multiplication are presented in Section 5.1.1,
where our results show that loop interchange produces a
smaller design. In contrast, Section 5.2 presents code for
which loop unrolling produces a smaller design.

4.3 Simplifying Data Streams
The compiler next optimizes the loop nest of each con-

trol thread to coalesce memory accesses, infer data reuse,
and simplify the loop nest. Each kernel pipeline receives
the same data that it would receive without optimization,
allowing each control thread to be processed independently.

Figure 5 illustrates four transformations from the perspec-
tive of an input data stream. Output data is optimized sim-
ilarly. The patterns are inferred from information gathered
earlier in the workflow (See Figure 3), and may span multi-
ple loops. In each illustration, the top portion shows a pat-
tern that is repeated in the original full data stream (flowing
left to right). Elements of the data stream are labeled with
their addresses. The bottom portion shows the reduced data
stream as actually fetched from external DRAM, and how
the original data stream is recreated. The various patterns
are processed as follows:

(a) Repeat: The addressing pattern comprises repeated
memory reads of the same address (A), either over the in-
nermost loop or multiple consecutive inner loop levels. The
control thread’s loop is replaced by a single memory read
request, and a buffer reproduces the original stream. In ad-
dition to repeating a single address, any of the following
patterns may be repeated to reuse larger blocks.

Figure 5: Access patterns and associated optimizations.

(b) Consecutive: The addressing pattern contains n stride-
1 accesses of data items starting at A, such as when visiting
successive elements of an array. The loop for generating the
n consecutive reads is replaced by a single burst read request
of size n. The underlying CoRAM-based streaming buffer is
not altered as the same elements pass through it.

(c) Transpose: The addressing pattern corresponds to a
strided memory read loop, such as when visiting the ele-
ments of a sub-block of a row-major 2D array in column
order. The control threads generate burst read requests for
required rows of the sub-block and buffer the entire sub-
block. A stride-permutation personality reorders the stream
on the fly to recreate the original strided data stream. The
control thread’s loop nest is reduced by implementing burst
reads of entire sub-block rows. Strides need not be fixed,
and may depend on indirect accesses (as in Listing 3).

(d) Sliding Window: The pattern corresponds to n suc-
cessive reads to consecutive addresses starting at A, followed
by another n successive reads from consecutive addresses
starting at A+1, and so on. This “sliding window” pat-
tern is common in filters. The control thread generates a
simple burst read from consecutive memory locations start-
ing at A. A special CoRAM personality buffers all of the
data in the sliding window in block memory, and ensures
that the data is delivered in the correct order. As in (b)
above, inner loop nests for generating this complex pattern
are completely simplified away with a single burst read re-
quest. The figure presents a one dimensional sliding window,
but the compiler also supports two dimensional sliding win-
dows. Data items within a row are routed to parallel kernel
pipelines by multiplexers and interleaved across rows.



Platform Xilinx ML605 Terasic DE4

FPGA
Xilinx

LX240T [30]
Altera

EP4SGX530[31]
Logic Cells 241,152 531,200
(Overhead (%)) 33% 30 %
Block Memory 14,976 KB 27,376 KB
(Overhead (%)) 13% 18%
DSPs 768 1,024
DRAM Bandwidth 6.4 GB/s 12.8 GB/s
DRAM Capacity 512 MB 2 GB
PCI Express x8 x8
UART Speed 500 KBits/s 115 KBits/s

Table 1: Parameters for test platforms. “Overhead” includes the
memory controllers, network-on-chip, among other components.

Figure 6: Complete design resulting from compilations.

4.4 FPGA Design Generation
The compiler backend produces the FPGA implementa-

tion by invoking the CoRAM Design Generator with: (1) the
ROCCC-generated VHDL kernel pipelines; (2) The control
threads; and (3) the required CoRAM personalities. Basic
CoRAM personalities such as streaming data buffers already
exist in the CoRAM personality library. A one-time effort
was necessary to build reuse buffer CoRAM personalities
that support repeated data, transposed data, and sliding
windows.

The CoRAM Design Generator creates a single FPGA
design containing: (1) the kernel pipelines; (2) the FSMs
compiled from the control threads; and (3) the soft-logic
implementation of the CoRAM architecture (including the
underlying platform-specific on-chip communication, exter-
nal memory modules, and I/O modules). This FPGA design
is processed by platform-specific synthesis tools that create
a bitstream for programming onto a device. The CoRAM
Design Generator also generates RTL models for simulation-
only studies that allows flexibly specifying the parameters
of hypothetical FPGA target platforms (see Section 5.1.4).

The CoRAM Design Generator currently supports the Xil-
inx ML605 and Altera DE4 platforms. Table 1 summarizes
the most salient characteristics of the two platforms. The
two rows in Table 1 labeled “Overhead” indicate resources
consumed by the soft-logic CoRAM implementation with-
out an attached user design. This is not a pure overhead as,
even in hand-crafted designs, kernel pipelines must be sup-
ported by non zero-cost infrastructure for communicating
with DRAM and I/O.

Figure 6 offers a block diagram of the complete FPGA
design. Most of the details shown in the figure, aside from
control threads, hardware kernels, and CoRAM personali-
ties, are below the CoRAM abstraction and handled by the
CoRAM Design Generator.

The figure shows memory controllers connected to a soft-
logic network-on-chip through multiple network endpoints
(labeled“N”), which avoids bottlenecking the available mem-
ory bandwidth. The network-on-chip can (interchangeably)
implement a variety of topologies, including the ring and
crossbar networks used in the evaluation, which vary in logic
cost and provided bandwidth. On the Altera DE4 with two
memory controllers, the global address space is interleaved
between the two channels at 256-byte boundaries. We elect
to use a single CoRAM cluster to service all of user logic
generated by our compiler. The cluster connects multiple
CoRAM blocks and the associated control threads to the
network-on-chip—one block and thread per memory variable
in the innermost loop body. Communication channels be-
tween the control threads and the hardware kernel pipelines
are automatically inserted to support synchronization, in-
cluding a staging mechanism (labeled “Serial/Synchroniza-
tion”), which allows the host computer to communicate with
the FPGA platform for data transfers and to collect perfor-
mance results.

Switching between ML605 or DE4 targets is trivial - a
configuration file specifies the number of memory controllers
(and associated network endpoints) to instantiate, and the
CoRAM Design Generator provides wrappers for floating
point IP cores and scripts to invoke device specific bitstream
generation tools.

5. EVALUATIONS
We evaluate our compiler on three code examples: single

precision matrix-matrix multiply, k -nearest neighbor, and
two dimensional single precision convolution (actual source
code included in Listings 2, 3, 4, and 5). We use standard
“blocked” implementations of these algorithms. For exam-
ple, in Listing 2, the 3 outer loops correspond to the familiar
triple-loop in standard matrix-matrix multiplication, except
in a blocked implementation. Multiply-accumulate opera-
tions are performed on sub-matrix tiles (thus the inner 3
loops) and not on individual elements. By buffering and
operating on the data tiles on chip, blocking algorithms in-
crease the number of times a data value fetched from mem-
ory is reused.1 All experiments run kernel pipelines, reuse
buffers, and other components at 100MHz, the highest clock
speed currently supported by the CoRAM prototype.

5.1 Matrix-Matrix Multiply
Listing 2 gives the source code for matrix-matrix multi-

plication (MMM) used to evaluate our compiler. In order to
work with the current compiler, the matrix sizes (separate
SIZE I, SIZE J, SIZE K to allow for non-square matrices),
and block sizes (separate BI, BJ, BK to allow for non-square
blocking) must be fixed at compile-time. SIZE I, SIZE J,
SIZE K must be multiples of BI, BJ, BK, respectively.

The innermost loop (line 8) in this baseline MMM imple-
mentation has a loop-carried dependency through the accu-
mulation of C[i*SIZE I+j], preventing parallel or overlapped

1While not a part of the current work, polyhedral tech-
niques[7] could automatically create blocking structures.



1 void mmm(float *A,float *B,float *C,
unsigned SIZE_I,unsigned SIZE_J,
unsigned SIZE_K) {

2 unsigned i,j,k,i0,j0,k0;
3 for(i0=0;i0<SIZE_I;i0+=BI)
4 for(j0=0;j0<SIZE_J;j0+=BJ)
5 for(k0=0;k0<SIZE_K;k0+=BK)
6 for(i=i0;i<i0+BI;i++)
7 for(j=j0;j<j0+BJ;j++)
8 for(k=k0;k<k0+BK;k++)
9 C[i*SIZE_I+j]+=A[i*SIZE_I+k] *

B[k*SIZE_K+j];

Listing 2: Blocked MMM Source Code.

Figure 7: MMM variable progressions.

executions of the loop body. As discussed in Section 4.2,
either loop interchange or loop unrolling must be applied to
achieve hardware concurrency. Figure 7 examines the data
access patterns of A, B, and C within the innermost three
loops, for both before and after the loop interchange. In the
bottom left, which presents the accesses pattern of the accu-
mulation variable C, the figure shows that the same matrix
element is read and written by all iterations of the innermost
loop, creating a loop-carried dependency. After interchange,
the invariant access is now at the outer loop, and the inner
and the middle loop iterations are no longer data dependent,
and can be executed in parallel or be pipelined.

In experiments that implement parallel kernel pipelines,
each data stream is distributed “round robin” among them,
and Reuse Buffers in front of the kernel pipelines allow them
to issue a computation each cycle. The arrangement of ker-
nel pipelines and Reuse Buffers as presented in Figure 4.

The inner loop at line 8 in the original code may be un-
rolled rather than interchanged via a user specified compiler
flag. For experiments in Section 5.1.1 that implement loop
unrolling, the data access patterns that follow those on the
left side of Figure 7. The middle and outer loops provide the
data independent iterations to the pipelined kernel based on
the fully unrolled inner loop. The inner loop’s loop-carried
dependencies caused by the memory variable C become sig-
nals that pass from pipeline stage to pipeline stage; only the
final accumulated value of C from the final stage is written
to memory. The arrangement of kernel pipelines and reuse
buffers is once again as depicted in Figure 4, except that
there is only one kernel pipeline that accepts multiple data
items from each input data stream. There is a singular ac-

# Opt BI,BJ %LC/MEM/DSP GFlop/sec(%)
1 I 64, 64 84 / 32 / 41 12.6 (98)
2 U 64, 64 83 / 92 / 41 12.6 (98)
3 I 32, 128 82 / 32 / 41 10.4 (81)
4 U 32, 128 83 / 92 / 41 10.4 (81)
5 I 32, 64 83 / 32 / 41 8.6 (67)
6 U 32, 64 81 / 92 / 41 8.6 (67)
7 I 128, 64 86 / 33 / 41 12.7 (99)
8 U 128, 64 86 / 92 / 41 12.6 (98)

Table 2: ML605 Block size experiments configurations. For all
trials, square matrices of size 1024 are used. For the Optimization
column, ”I”=Interchange and ”U”=Unroll.

cumulated value for each computation that feeds back into
the kernel pipeline across blocks.

5.1.1 Block Sizing and Loop Optimizations
The first experiments examine the effects of different block

sizes in combination with different loop optimizations. Our
goal is to demonstrate the range of possible outcomes en-
abled by the rapid exploration of design options through our
compiler. We use a block size of 64-by-64 as the baseline on
square 1024-by-1024 MMM. We then consider non-square
blocks that are twice, half and the same size as the baseline
block size. For each choice of block size, we apply either the
loop interchange or the loop unrolling optimization, and cre-
ate kernel pipelines containing 64 single precision floating-
point adders and 64 single precision floating-point multipli-
ers. When synthesized for the LX240T on the Xilinx ML605,
ROCCC-generated pipelines at 100MHz yield a theoretical
peak performance of 12.8 GFlop/sec.

Table 2 reports the measured performance on the Xilinx
ML605 for all combinations of 4 block sizes (indicated by
columns BI and BJ) and the 2 loop optimizations (indicated
by column Opt: Interchange or Unrolling). The fourth col-
umn indicates resource utilization in terms of the percent-
age of the LX240T’s Logic Cells (LC), Block Ram (MEM),
and DSP Blocks (DSP) used by each design (as reported by
ISE 13.4). Execution times are measured using a hardware
counter that counts clock cycles from when computation has
started (input arrays A and B starting in DRAM) to when
computation has finished (output array C completely writ-
ten to DRAM). The column GFlop/sec reports the abso-
lute performance in GFlop/sec and the percentage of the
12.8 GFlop/sec peak attained.

Rows 1 and 2 show that square blocks are effective, as
both experiments achieve over 98% of peak performance; the
loop interchanging optimization results in less BRAM usage.
The results in the remaining rows show that poor choices
of block sizes can indeed negatively impact performance.
Rows 3 and 4 show that a rectangular 32-by-128 block-
ing (the same size as the baseline square 64-by-64 blocking)
leads to a drop in performance (only 81% of the peak perfor-
mance). Halving the block size to 32-by-64 (rows 5 and 6)
further hurts performance even more (down to 67% of peak
performance). Doubling the block size to 64-by-128 (rows 7
and 8) provides minimal performance improvements.

As a point of reference, the best performing implemen-
tation of MMM on the Xilinx ML605 we could find was
Bao, et al. [4]. Their hand-tuned design uses a systolic ar-
ray of 2x2 multiply-accumulators connected by a ring net-
work, and implements 32 processing elements running at
200 MHz. They achieve 50.4 GFlop/sec on MMM of size



1 void mmm_indirect(unsigned **base,
unsigned SIZE_I,unsigned SIZE_J,
unsigned SIZE_K) {

2 unsigned i,j,k,i0,j0,k0;
3 float **A=(float **)base[0];
4 float **B=(float **)base[1];
5 float **C=(float **)base[2];
6 for(i0=0;i0<SIZE_I;i0+=BS_I)
7 for(j0=0;j0<SIZE_J;j0+=BS_J)
8 for(k0=0;k0<SIZE_K;k0+=BS_K)
9 for(i=i0;i<i0+BS_I;i++)

10 for(j=j0;j<j0+BS_J;j++)
11 for(k=k0;k<k0+BS_K;k++)
12 C[i][j]+=A[i][k]*B[k][j];

Listing 3: Blocked MMM with Indirection.

# Kern Net % LC/MEM/DSP GFlop/sec
9 64 Ring 97 / 28 / 25 12.6
10 128 Xbar 96 / 38 / 50 25.4

Table 3: MMM Experiments on the DE4. In these trials, square
matrices of size 1024 and blocks sized to the number of kernels.

2048-by-2048.2 Their carefully hand-tuned MMM is 4 times
faster (2x from higher frequency and 2x from better logic
packing). However, our design is automatically produced
from C source code by a compiler that can handle perfect
loop nests and can flexibly re-target any CoRAM supported
platform.

5.1.2 Indirection
Support for indirect memory references is evaluated using

another common matrix-matrix multiplication implementa-
tion (Listing 3) with indirect row-major 2D matrices. We
also load the base address of each matrix from memory.

The hardware generated by this program has the same
basic structure as the one generated for Listings 2, since the
real differences manifest mostly in the control threads. The
implementation of this program does require an instance of
the CoRAM Load-Store personality for each control thread,
which allows the control threads to directly access DRAM in
order to dereference pointers. In the other examples, control
threads only make requests to transfer data between DRAM
and the streaming buffers, and do not examine the memory
data values themselves. The Load-Store personality sup-
ports memory reads and writes by the control threads, and
includes a scratchpad for caching dereferenced values.

In general, memory indirections can introduce a signifi-
cant performance overhead. In this particular example, the
indirections are infrequent and readily amortized with the
help of the scratchpad. We achieved 98% of the peak per-
formance of the kernel pipelines on the Xilinx ML605, using
the same configuration as Row 1 of Table 2.

5.1.3 Network and Memory Controllers
We recompiled the unmodified MMM program in Listing 2

for the Altera DE4 platform to test our claims of portabil-
ity and scalability. The EP4SGX530 FPGA on the Altera
DE4 provides twice the logic capacity as the LX240T on the
ML605, and twice the DRAM bandwidth through two inde-
pendent DDR controllers. These differences are transparent
to the programmer, who requests two memory controllers

2As both designs overlap computation with communication,
and we report throughput rather than absolute computation
time, the difference in matrix sizes is irrelevant.

Parameter
Kintex-7

XC7K70T [32]
Virtex-7

XC7V2000T[32]
Logic Cells 65,600 1,954,560
Block Ram 4,860KB 46,512KB
DSP 240 2,160
Mem Controllers 1 4
Kernels Used 8 512
Data Size 128 1024
Block Size 16 512
GFlop/sec 1.44 93.6

Table 4: Simulations targeting Xilinx 7-series chips.

from the CoRAM Design Generator (“NUM MC=2”) and in-
vokes a (provided) DE4 bitstream generation script.

Row 9 in Table 3 reports the synthesis and performance
results achieved by simply recompiling the best-performing
configuration on the Xilinx ML605 (Row 1 of Table 2, 64-by-
64 block, 64 parallel kernel pipelines). The resulting design
reached the same performance as on the Xilinx ML605, ap-
proximately 98% of the theoretical peak performance of the
kernel pipeline (also synthesized to 100 MHz on the DE4).

With the extra capacity of the DE4’s EP4SGX530, we can
instantiate a larger number (128) of parallel kernel pipelines
than on the Xilinx ML605, and do so by setting “MAXKER-
NELS=128” and similarly redefining the constant that sets
the block size. Through the CoRAM Design Generator, we
also selected the higher-performance crossbar network-on-
chip topology to deliver DE4’s dual DDR memory band-
width and service the larger number of kernels. As row 10
in Table 3 reports, we can easily double performance by re-
tuning to the greater capacity of the Altera DE4 platform.

5.1.4 Scaling
To further demonstrate portability and scalability, we com-

pile the MMM code for hypothetical FPGA platforms sized
to mimic the smallest and largest of Xilinx’s Virtex-7 parts.
We conservatively assume the kernel pipelines run at the
same 100 MHz as in the earlier experiments. The assumed
FPGA configuration and the performance results are shown
in Table 4. The results show that our compiler is able to pro-
duce designs to take up the available level of logic resources
of the two FPGAs and produce a commensurate level of
performance for the logic resources consumed. In the small
extreme (which mimics the small Kintex FPGA), we found
the overhead of the CoRAM infrastructure to be nearly 2

3

of the available logic resources,3 and we only fit 8 kernels.
In the large extreme, the compiler scaled up the design and
performance as expected. We assume that the large FPGA
will be fitted with four DDR channels.

5.2 k -Nearest Neighbor
The second example in our evaluation is the k -Nearest

Neighbor (k -NN) algorithm (Listing 4). This algorithm finds
the k best matches for each input vector (called a target
descriptor) among a larger set of reference descriptors. We
use the square of Euclidean distance metric to compare 128
element vectors of single byte integers.

In the example code, we block the iteration over target
descriptors into two loops (lines 2 and 4) to increase data

3As previously discussed, this is not pure overhead, as even
hand-crafted designs require infrastructure for buffering and
communication.



1 void match(unsigned char *target,
unsigned char *ref, void *out,
unsigned Sz, unsigned TSz,
unsigned RSz, unsigned Ni) {

2 for (unsigned bi=0;bi<TSz;bi+=BSz) {
3 for(unsigned ri=0;ri<RSz;ri++) {
4 for(unsigned li=bi;li<bi+BSz;li++) {
5 unsigned cur=0;
6 for(unsigned i=0;i<Sz;i++) {
7 short val=(short)target[li*Sz+i]-
8 (short)ref[ri*Sz+i];
9 unsigned short v=val*val;

10 cur+=v;
11 }
12 StoreMin(out,cur,Ni,RSz,BSz,TSz)4;

Listing 4: k -Nearest Neighbor Source Code.

# MC Depth % LC/MEM/DSP %Eff
11 2 8 80 / 33 / 100 73
12 1 16 83 / 25 / 100 90

Table 5: k -NN Experiments. “Depth” indicates the number of
target descriptors buffered per kernel, and “%Eff” indicates the
percentage of peak performance achieved.

reuse and locality. The loop at line 3 iterates over all ref-
erence descriptors. The evaluation is based on finding k=2
nearest neighbors, a common scenario in vision algorithms,
where a much further second nearest neighbor indicates a
strong match. As in MMM, our compiler can generate kernel
pipelines based on either loop unrolling or loop interchange
(Section 4.2). We have found that in this application, inter-
changing loops (to support a large number of parallel kernel
pipelines) is not cost effective due to excessive buffering re-
quirements. Therefore, we focus on loop unrolling (lines
6-10) to create a large kernel, which is then replicated 8
times for parallel processing. We target the Altera DE4
platform for this evaluation, and can make a direct compar-
ison against a high-quality hand designed implementation
that we are using in an internal research project.

Table 5 presents our experimental configurations and re-
sults. Row 11 reports an implementation that uses two
memory controllers. We were only able to successfully imple-
ment on-chip buffers that were 8 target descriptors deep, and
consequently achieved only 73% of the potential through-
put. The implementation reported in Row 12 has removed
one memory controller, which has freed enough resources
to double the buffer size. This halved the number of times
that the “ri” loop (line 4) was executed, which effectively
halves the bandwidth requirements. The result is that the
implementation in Row 12 is able to reach 90% of the un-
rolled kernel pipeline’s peak throughput. In comparison, our
hand designed implementation can pack in 16 kernels on the
EP4SGX530 on the Altera DE4, and achieve twice the per-
formance over our compiler-generated implementation.

5.3 Two Dimensional Convolution
Listing 5 shows our final example, a direct two-dimensional

convolution. In our evaluations (using a 2048-by-2048 data
set, and 32-by-32 blocks), we focus on small convolution
sizes (5-by-5 and 13-by-13) because larger convolutions are

4This example has a non-perfect loop nest due to the reduc-
tion step (implemented via macro StoreMin on line 12). Our
compiler instantiates special hardware for known reductions.
The rest of the loop nest is compiled as described.

1 void calc_2d_filter(float *IN,
float *OUT, float *FILTER, unsigned Sz,
unsigned BSz, unsigned FSize) {

2 unsigned starti,startj,i,j,ii,jj;
3 for (starti=0;starti<Sz;starti+=BSz)
4 for(startj=0;startj<Sz;startj+=BSz)
5 for(i=starti;i<starti+BSz;i++)
6 for(j=startj;j<startj+BSz;j++)
7 for(ii=0;ii<FSz;ii++)
8 for(jj=0;jj<FSz;jj++)
9 OUT[i*Sz+j]+=IN[(i+ii)*(Sz+FSz-1)

+j+jj]*FILTER[ii*FSz+jj];

Listing 5: Blocked Two Dimensional Convolution.

# Filter Size % LC/MEM/DSP GFlop/sec (%)
13 5 58 / 24 / 22 4.4 (69)
14 13 60 / 26/ 22 6.398 (99.9)

Table 6: 2D Convolution Experiments.

more commonly implemented with the help of Fast Fourier
Transforms. As with the previous examples, the loop-based
implementation has been blocked for data locality.

In this example, the compiler applies the loop interchange
optimization to the two inner-most loops (which were caus-
ing a loop-carried dependency in the loop body), and moves
them above the two loops originally at lines 5 and 6. When
processing the IN buffer, the compiler detects two sequential
accesses due to loop variables j and jj, with a computable
access pattern between them and outside them due to loop
variables i and ii. The compiler uses this information to infer
a two dimensional sliding window buffer, which is instanti-
ated along with a buffer to store the entirety of FILTER,
which has a very significant effect on performance.

Our results are shown in Table 6. The compiler gen-
erated design fits 32 kernel pipelines onto the LX240T of
the ML605. The system with 5-by-5 filters achieves 4.4
GFlop/sec, or 69% of the theoretical peak throughput on
5-by-5 filters. For 13-by-13 filters, increased data reuse al-
lows nearly 100% of the kernel pipeline’s theoretical peak
throughput (6.4GFlop/sec) to be reached.

As a reference, Bao, et al. [4] (also compared to for MMM
in Section 5.1.1) report a hand-tuned implementation of a
2048-by-2048 two-dimensional convolution with a filter size
of 5-by-5. Their design, like ours, contains 32 processing
elements. However, they only report 2.04 GFlop/sec of sus-
tained performance. We suspect their lower performance is
due to differences in the exploitation of data reuse.

6. CONCLUSIONS AND FUTURE WORK
We have presented a compiler that creates full FPGA im-

plementations of perfect loop nests directly from software
source code. Three test programs and two real world plat-
forms demonstrate the efficacy of the compiler, and achieve
performance ranging from a factor of 4 slower to a factor of
2 faster than hand designed implementations. This demon-
strates that our compiler is a promising step towards en-
abling FPGA design creation by software developers without
hardware design skills.

We are considering several enhancements to our compiler:

• Allowing imperfect loop nests to support more programs.

• Including polyhedral analyses to support better opti-
mizations and allow the compiler to create a blocked com-
putation structure.



• Targeting platforms that contain multiple FPGAs and
very different memory interfaces, such as Convey’s[3].
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