Evaluating Rapid Application Development with Python for Heterogeneous Processor-based FPGAs

Andrew G. Schmidt, Gabriel Weisz, and Matthew French
Information Sciences Institute, University of Southern California
Email: {aschmidt, gweisz, mfrench}@isi.edu

Abstract—As modern FPGAs evolve to include more heterogeneous processing elements, such as ARM cores, it makes sense to consider these devices as processors first and FPGA accelerators second. As such, the conventional FPGA development environment must also adapt to support more software-like programming functionality. While high-level synthesis tools can help reduce FPGA development time, there still remains a large expertise gap in order to realize highly performing implementations. At a system-level the skill set necessary to integrate multiple custom IP hardware cores, interconnects, memory interfaces, and now heterogeneous processing elements is complex. Rather than drive FPGA development from the hardware up, we consider the impact of leveraging Python to accelerate application development. Python offers highly optimized libraries from an incredibly large developer community, yet it is limited to the performance of the hardware system. In this work we evaluate the impact of using PYNQ, a Python development environment for application development on the Xilinx Zynq devices, the performance implications, and bottlenecks associated with it. We compare our results against existing C-based and hand-coded implementations to better understand if Python can be the glue that binds together software and hardware developers.

I. INTRODUCTION

As FPGA devices continue to increase in heterogeneity, e.g. incorporating multi-core ARM processors, the software community has been taking notice. Moreover, industry has been shifting its focus to FPGAs over the past few years, as evidenced by Microsoft’s Catapult project [1], Intel’s acquisition of Altera [2], and most recently Amazon’s inclusion of FPGAs as part of their Amazon Web Services [3]. While the FPGA community is keenly aware of the performance and power efficiencies FPGAs offer developers, there remains a significant challenge to broaden FPGA usage. High-level synthesis ( HLS) and other productivity tools are a start, but still require FPGA expertise to direct the tools to achieve good results. While HLS has an important role in FPGA development, incorporating hardware accelerators into an end-user’s application can be a daunting task. The software community is use to leveraging efficient libraries, highly tuned for the hardware in order to obtain the best performance. What the FPGA community needs to embrace is a more software-down development flow rather than hardware-up. Furthermore, for wider FPGA adoption by the software community, the tools and languages supported need to go beyond conventional embedded systems languages.

Over the last several years Python has grown in popularity both in academia and industry [4]. With a wide variety of libraries and tools available to developers, Python is being used in everything from scientific computing to image processing and machine learning, and growing more each day. Making FPGAs more user friendly certainly has been an on-going effort for decades and this work does not claim to solve this problem. Instead, it looks at how entire communities have sprung up seemingly overnight around other embedded platforms, such as Raspberry Pi and Arduino. The success of these platforms stems from an inexpensive compute platform, ease of use programming environment, modularity, and a plethora of interesting and fun projects readily available to be tried, modified, and refined.

Towards this trend, Xilinx recently released PYNQ (PYthon on zyNQ) [5] as a productivity environment and platform for developers, combining the use of Python, its tools and libraries with the capabilities of programmable logic and ARM processors. High-level languages are desired in an embedded space where today C/C++ dominates, so long as the performance is not impacted. This paper aims to leverage Python for rapid application development on FPGAs and to understand the performance and development implications of doing so. With Python we can quickly develop an application, in this case Edge Detection, and compare the performance across several different C/C++, Python, and hardware accelerated implementations. Our results are highly encouraging in that not only can using Python reduce application development time by exploiting a tremendously rich and diverse set of packages, libraries, and tools, but we are also able to obtain highly performing implementations when compared to conventional C/C++ embedded implementations.

II. BACKGROUND AND RELATED WORK

With the goal of this paper being to explore how an application developer might utilize custom hardware kernels with the Xilinx PYNQ application framework [5], it is important to describe what PYNQ is and how this work is using Python. The PYNQ application development framework is an open source effort designed to allow application developers to achieve a “fast start” in FPGA application development through use of the Python language and standard “overlay” bitstreams that are used to interact with the chip’s I/O devices. The PYNQ environment comes with a standard overlay that supports HDMI and Audio inputs and outputs, as well as two 12-pin PMOD connectors and an Arduino-compatible connector that can interact with Arduino shields. The default overlay
instantiates several MicroBlaze processor cores to drive the various I/O interfaces. Existing overlays also provide image filtering functionality and a soft-logic GPU for experimenting with SIMT-style programming [6]. PYNQ also offers an API and extends common Python libraries and packages to include support for Bitstream programming, directly access the programmable fabric through Memory-Mapped I/O (MMIO) and Direct Memory Access (DMA) transactions without requiring the creation of device drivers and kernel modules. Our work builds upon these APIs and Overlay concepts to develop application kernels that can be dynamically connected together to create processing pipelines.

Several existing projects [7]–[10] allow application developers to describe hardware kernels (and even entire systems) using low-level python code. This approach is complementary to our approach, in that these projects could be used to create hardware kernels that can be incorporated into PYNQ overlays. These systems utilize a Python syntax to describe hardware in a way that is functionally equivalent to behavioral HDL, and are not as sophisticated in terms of the code that they accept as modern C-based high-level synthesis tools such as Vivado HLS, which could also be used to generate hardware kernels that are connected together using our approach.

III. DESIGN

There exist a number of approaches and conventions for embedded system development. The common approach includes implementing a design in C/C++, profiling the application to determine the computationally intensive portions, and migrating those kernels to hardware through either custom HDL or a high-level synthesis tool. While C/C++ remain near the top of the list of programming languages for embedded systems, Python has consistently been ranked at or near the top of Lists of Programming languages taught in academia and used in industry. As a result, we consider what design and performance implications are involved when using Python in an FPGA development environment. This process is motivated by the release of PYNQ from Xilinx which aids in the interfacing with custom hardware in the FPGA fabric and providing a number of useful utilities, such as downloading bitstreams from within the application.

First we must consider what PYNQ is and is not. PYNQ does not currently provide or perform any high-level synthesis or porting of Python applications directly into the FPGA fabric. As a result, a developer still must use create a design using the FPGA fabric. While PYNQ does provide an Overlay framework to support interfacing with the board’s IO, any custom logic must be created and integrated by the developer. A developer can still use high-level synthesis tools or the aforementioned Python-to-HDL projects to accomplish this task, but ultimately the developer must create a bitstream based on the design they wish to integrate with the Python, seen in Figure 1.

What PYNQ does provide is a simplified way of integrating and interfacing with the hardware once it is designed and the bitstream is created, for example bitstream programming as shown in Figure 2. Plus, PYNQ exposes the wealth of additional Python libraries and tools to allow for a much richer software development environment than conventional C/C++ embedded systems design. This includes interactive debuggers, \texttt{pdb}, profiling and measurement tools, \texttt{cProfile/timeit}, and libraries and packages like \texttt{NumPy}, \texttt{SciPy}, and \texttt{matplotlib}.

In this work typical FPGA development is still necessary in that a Vivado project is created, hardware accelerators are added and the design is synthesized, implemented, and a bitstream is generated. PYNQ does not change this process. For traditional FPGA developers this is actually a comforting fact, which means existing designs and tools do not necessarily need to be modified to work with PYNQ. Existing overlays or hardware/software co-design tools that assemble a bitstream through Vivado will still work. While a number of different hardware/software development environments exist [11]–[14] this work uses the Redsharc project [15] due to its focus on streaming-based kernel development and tight integration with the Xilinx tool-flow.

Within Redsharc the hardware kernel development is simplified by abstracting away the complexities of a full system-on-chip design. This is accomplished by handling the system assembly, run-time management, and data transfers, for the designer. In effect, the developer is now tasked with creating high performance compute kernels much like how highly efficient libraries are developed and leveraged in Python. Redsharc can then be integrated within the PYNQ application through simple MMIO functions to configure the connectivity of the different hardware kernels and DMA cores. PYNQ uses

```
In [ ]:
```

```
# Create Overlay Bitstream Object
bit0 = Overlay("project.bit")
# Program Bitstream
bit0 . download()
```

![Fig. 2. PYNQ Programming Bitstream Example](image_url)
the C Foreign Function Interface for Python (CFFI) [16], a standard Python library, to bind with any existing C shared object libraries, like the DMA controller. An example of this setup and configure is shown in Figure 1 and in Figure 3.

In | ]: # Redsharc Stream Switch Network (SSN) Configuration
ssn_addr = bit0.get_ip_addr_base('ssn_ctlr_reg')
ssn_len = bit0.get_ip_addr_range('ssn_ctlr_reg')
# Setup SSN Controller's Configuration Register
ssn_ctlr = ssn_addr + 0x00000000
ssn_ctlr_ip = PMIO(ssn_ctlr, 0xFFFF)
# Connect SSN Crossbar so that data streams from:
# DMA0 --> Conv. Kernel --> Canny Kernel --> DMA1
# Port 0 --> Port 1 --> Port 2 --> Port 1
set_ssn_port(ssn_ctlr_ip, DMA0_PORT, CONV_PORT)
set_ssn_port(ssn_ctlr_ip, CONV_PORT, CANNY_PORT)
set_ssn_port(ssn_ctlr_ip, CANNY_PORT, DMA1_PORT)

Fig. 3. Configuring Redsharc with PYNQ

In addition to MMIO, PYNQ provides a convenient and efficient way to perform DMAs between memory and the programmable fabric. The DMA engine is first initialized, then a buffer is created and can be interfaced in any way the user needs. Once ready for the transfer, the user can call a simple transfer for the DMA, all shown in Figure 4.

In | ]: # Setup DMA Transfers and Test Data
dma0 = DMA0(0x04600000, DMA_TO_DEV)
# Setup DMA Object for Data
dma0.create_buf(IMAGE_SIZE, 0)
ing_data = dma0.get_buf()
# Write Some Data Into Buffer
for i, pixel in enumerate(image_buf):
    image_data[i] = pixel
# Initiate DMA Transfer
dma0.transfer(IMAGE_SIZE, DMA_TO_DEV)
dma0.wait()

Fig. 4. DMA example with PYNQ

IV. EVALUATION

To understand and evaluate the performance implications of using Python and PYNQ for application development we use and compare C, Python, OpenCV libraries, and custom hardware accelerators. This section first describes the different testing configurations of the experimental setup followed by the analysis and discussion of the results.

A. Experimental Setup

For this work we conducted several experiments on the Xilinx PYNQ platform [5], which includes the Xilinx xc7z020clg400-1 part and 512 MB of DDR3 memory. The processor clock is configured for 667 MHz and the fabric and hardware accelerators are configured to run at 200 MHz. Each experiment performed Edge Detection on 1024x768 grayscale images, a common step in many image processing pipelines [17]. Our motivation for using Edge Detection is the widely available code and libraries, as well as, being a highly useful feature of image processing flows.

In total six different software and hardware configurations are used in this experiment. The purpose is to evaluate the performance implications of using C vs. Python in an embedded development environment with FPGAs for application development. The hardware for these experiments include a custom 2D direct convolution kernel for Gaussian filtering, and a publicly available Canny edge detector core that performs the gradient calculation and non-max suppression steps [18], modified to improved buffering. The hardware kernels each use streaming interfaces that can consume and produce 1 pixel per cycle, using 32-bit integer accumulation during convolution, and 32-bit integer gradient calculation. The FPGA is configured the same for both C and Python-based experiments.

The C versions were written using OpenMP and run on one and two threads to utilize the two ARM A9 cores on the Zynq 7020 device. The OpenCV version utilizes the OpenCV library to perform image convolution using the GaussianBlur function followed by the Canny function. The hardware accelerated version utilizes a hand-coded convolution and canny edge detector kernel running at 200 MHz in the FPGA fabric. The C versions is our baseline and shows what a number of research papers have already shown, edge detection on FPGAs can offer performance improvements over software implementations.

B. Results and Analysis

The results of running Edge Detection on six different hardware and software configurations is shown in Table I. First, we show the performance gains from traditional C implementations on one and two cores. Using OpenMP we are able to nearly achieve linear speedup from one to two cores. With OpenCV we are able to leverage highly optimized software implementations for the kernels and achieve an impressive 22.91× speedup over the C reference implementation. The hardware accelerated version does slightly outperform the OpenCV version by streaming the output of the convolution kernel directly into the canny kernel, without requiring a memory transaction. The work involved to achieve these performance gains did require development effort. Integrating OpenMP to provide better scalability across the ARM A9 cores took approximately one day. The OpenCV implementation was based on reference designs online, but did require cross-compiling and installing the necessary libraries on the target platform. The entire process was performed in approximately two hours. Finally, the hardware accelerated version leveraged an Open Source implementation, but in order to obtain better throughput a buffering mechanism was added. The hardware implementation took approximately one week. These efforts could have been improved by using high-level synthesis tools, and as such, is not meant to be a main takeaway from this work.

Instead, we focus on the ability to rapidly develop an application and obtain results on the target platform. In the C development environment this includes compiling and testing on the host, cross-compiling, testing, and debugging on the target platform, then integrating with the hardware kernel through device drivers and possibly other kernel modifications. The system complexity of managing kernel, device drivers, root file systems, data in kernel space vs. user space, in
addition to the FPGA development quickly necessitates a broad skill set or a development team.

Utilizing a platform such as PYNNQ, where Python is the main programmers interface to the hardware, the portability complexity and need for cross-compiler and device drivers is eliminated. PYNNQ provides APIs for programming the bitstream, reading and writing data through MMIO and DMA, significantly reduce the system complexity. The profiling and debugging tools built into Python or available through libraries and package installations enables a developer to quickly build, test, and refine their application.

While obtaining performance gains in C and hardware are common place, we were mostly interested in what the performance and overhead of using Python and PYNNQ. As software developers embrace Python for ease of programming, we show that native ports or implementations can yield terrible performance. A straight port of the C version of the Edge Detector was implemented in Python and resulted in running 334.8× slower than the C version. Even though the port took less than one hour, it is meant to highlight the importance of using Python’s extremely large community of libraries, analysis tools, and debuggers. With very little effort, less than 10 minutes, a Python OpenCV implementation running on the ARM A9 cores, obtaining an 11.43× speedup over the C version and comical 3,826.94× speedup over the Python C ported version.

Finally, we wanted to see how a hardware accelerated core combined with Python would perform. The speedup is 30.2× when comparing with the single threaded C version. The configuration was even 2.64× faster when compared against the Python OpenCV version. Furthermore, when comparing the two hardware versions, C and Python, it is the Python version that was able to edge out C with a slight 1.12× improvement. The differences are largely attributed to the DMA bandwidth we were achieving, with a slight improvement in the Python version. These results are highly encouraging and indicate that Python in combination with hardware accelerator kernels can match or even outperform C implementations.

V. CONCLUSION AND FUTURE WORK

With FPGAs becoming more heterogeneous, capable, and processor-centric it is evident a more software-down development environment is needed. Xilinx recently released PYNNQ with the aim to support software developers using Python to access the FPGA. The combining of both Python software and FPGA’s performance potential is a significant step in reaching a broader community of developers, akin to Raspberry Pi and Arduino. This work studied the performance of common image processing pipelines in C/C++, Python, and custom hardware accelerators to better understand the performance and capabilities of a Python + FPGA development environment. The results are highly promising, with the ability to match and exceed performances from C implementations, up to 30× speedup. Moreover, the results show that while Python has highly efficient libraries available, such as OpenCV, FPGAs can still offer performance gains to software developers.

This initial study provides insight into how PYNNQ works and how to interact with the programmable fabric and hardware accelerators through Python. The performance results are encouraging and we are currently evaluating additional application benchmarks in a variety of scientific computing and machine learning domains. We are also evaluating porting the system to the newly released Xilinx Zynq UltraScale+ FPGA which include four ARM A53 application processors and two ARM R5 real-time processors.

REFERENCES